Polynomial interior point cutting plane methods
نویسنده
چکیده
Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the relaxation. Typically, these cutting plane methods can be developed so as to exhibit polynomial convergence. The volumetric cutting plane algorithm achieves the theoretical minimum number of calls to a separation oracle. Long-step versions of the algorithms for solving convex optimization problems are presented.
منابع مشابه
Linear Programming ( Lp ) Approaches to Semidefinite Programming ( Sdp ) Problems
Until recently, the study of interior point methods has dominated algorithmic research in semidefinite programming (SDP). From a theoretical point of view, these interior point methods offer everything one can hope for; they apply to all SDP’s, exploit second order information and offer polynomial time complexity. Still for practical applications with many constraints k, the number of arithmeti...
متن کاملA Homogenized Cutting Plane Method to Solve the Convex Feasibility Problem
We present a cutting plane algorithm for the feasibility problem that uses a homogenized self-dual approach to regain an approximate center when adding a cut. The algorithm requires a fully polynomial number of Newton steps. One novelty in the analysis of the algorithm is the use of a powerful proximity measure which is widely used in interior point methods but not previously used in the analys...
متن کاملSolving Real World Linear Ordering Problems Using a Primal Dual Interior Point Cutting Plane Method
Cutting plane methods require the solution of a sequence of linear programs where the solution to one provides a warm start to the next A cutting plane algorithm for solving the linear ordering problem is described This algorithm uses the primal dual interior point method to solve the linear programming relaxations A point which is a good warm start for a simplex based cutting plane algorithm i...
متن کاملPolynomial Cutting Plane Algorithms for Two-stage Stochastic Linear Programs Based on Ellipsoids, Volumetric Centers and Analytic Centers 1
Traditional simplex-basedalgorithms for two-stage stochastic linear programscan be broadly divided into two classes: (a) those that explicitly exploit the structure of the equivalent large-scale linear program and (b) those based on cutting planes (or equivalently on decomposition) that implicitly exploit that structure. Algorithms of class (b) are in general preferred. In 1988, following the w...
متن کامل1 Solving Linear Ordering Problems with a Combined Interior Point / Simplex Cutting Plane Algorithm
We describe a cutting plane algorithm for solving linear ordering problems. The algorithm uses a primal-dual interior point method to solve the rst few relaxations and then switches to a simplex method to solve the last few relaxations. The simplex method uses CPLEX 4.0. We compare the algorithm with one that uses only an interior point method and with one that uses only a simplex method. We so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 18 شماره
صفحات -
تاریخ انتشار 2003